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Abstract. The propagating reaction-diffusion waves that develop in the isothermal autocatalytic system A + B -* 2B
from a local initial input of reactant B are considered. A solution valid for a small initial input of B is obtained first,
and this is augmented by numerical solutions of the general problem. These show that, asymptotically, the
reaction-diffusion wave propagates with the minimum, physically acceptable, wave speed. The large-time solution
for the general case is then discussed and it is shown that ahead of the reaction-diffusion front is a weak
diffusion-controlled region. It is the matching between these two regions that fixes the wave speed, so that the speed
of propagation of the reaction-diffusion front is controlled by the rate at which B can spread forward by diffusion.

1. Introduction

We consider the isothermal quadratic autocatalytic reaction

A+B-->2B rate klab, (1)

where a and b are the concentrations of the species A and B and k, is the rate constant. In
particular we discuss the reaction-diffusion waves that can be set up by this simple reaction.
To this end we consider the situation of an initial infinite expanse of reactant A into which an
amount of reactant B is introduced in some local region. A and B react via (1) setting up
concentration gradients and from this initial region reaction-diffusion waves propagate
outwards. We treat only the case of one-dimensional slab geometry (with co-ordinate x) and,
by symmetry, we need only consider the region x > 0.

We find that to determine the large-time behaviour we need to look for travelling-wave
solutions of an equation for b of the form

9b d 2b
= + b(l - b). (2)dt Ox2

This problem has a long history; it was proposed originally by Fisher, [1], as a model for the
advance of an advantageous gene. Later the same equation has arisen in laminar flame
propagation (see, for example, [2] and [3]), and in neurophysiology [4, 5, 6]. Kolmogorov et
al. [7] showed that equation (2) possesses a travelling-wave solution which propagates with a
uniform velocity v0 with the necessary condition that v0 > 2. Later it was shown by McKean
[8] that from a step-function initial distribution the solution of (2) evolved into a wave
propagating with the minimal velocity v0 = 2, a result derived also by Rosen [9], though his
argument required the application of a particular biological constraint. The result given in [8]
has been extended by Bramson [10, 11] who showed that the position of the front x = m(t)
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was, in our notation, given by

3
m(t) = 2t - 3 log t + 0(1), (3)

for t (time) large.
The arguments given in [8, 10,11] are in terms of Brownian Motion and, though

mathematically thoroughly rigorous, are somewhat complex. It is the intention in this paper
to present a very much simpler argument which also arrives at result (3) and which brings
out more clearly the mechanism by which the reaction-diffusion wave is propagated in the
context of the simple isothermal autocatalytic reaction (1). We show, in this particular
situation, that ahead of the reaction-diffusion front is a very weak diffusion-controlled
region. Hence we see that it is necessary for a small amount of reactant B (we show that, in
fact, this is exponentially small) to first diffuse into this region ahead of the reaction-
diffusion front, to initiate the reaction with A. This then allows the autocatalytic reaction (1)
to develop which then enables the reaction-diffusion wave to propagate forward with a
speed which is controlled by the ability of B to diffuse ahead of it. We feel that this gives a
better insight into the basic mechanism behind the propagation of the wave in our chemical
context and is worth presenting for that reason.

2. Equations

The equations for the species A and B, reacting via (1), are

da d2 a

- = D - kab, (4a)
at =a --2

ab a2b
0 = D 2 + kab, (4b)
dt dx

where we have assumed equal diffusion coefficients for A and B and where x and t are space
and time variables respectively.

The type of chemical reactions which are modelled by the kinetic scheme (1) generally
involve species A and B which have a comparable molecular size. For reactions involving
such molecules little variation is found between their diffusion rates and it is then plausible
to consider the species A and B as having equal diffusion coefficients, as a first approxima-
tion. However, it should be noted that the kinetic scheme (1), with some modifications, does
have similarities with biological mechanisms, for example enzyme reactions, where the
molecular size and hence the diffusion rates of the species A and B could differ considerably.
The modifications arising from differing diffusion coefficients are discussed in Billingham and
Needham [12]. The initial conditions are

a = ao , - <X< ,

(5)

bI o, Ixl>l'

where g(x) is some given smooth symmetric function of i, and a and b are positive
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constants. Equations (4) are made non-dimensional by putting

t=klaot, x= k D ) x, a= aa, b= aO3, (6)

after which (4) and (5) become

dao d2a
= - a /3 (7a)dt dx

2

= t + a3, (7b)at dX2

and

a =1, allx,
(8)

{ 130g(x), Ixl <(8)

where the non-dimensional parameters 10 = bolao (a measure of the initial concentration of

B relative to A) and A = (klaol2/D)"/2 . Note that in (6) we have used (ka,)- which is

representative of the time scale of reaction (1) and we have kept the imposed length scale in

the initial conditions (8) through the parameter A.
We begin by looking at the solution for small ,3, which we shall find brings out all the

salient features of the general solution. We then go on to look at the general solution when t

is large, and, in particular, at the reaction-diffusion wave. We complete the work by giving

some numerical solutions of equations (7), which confirm the analysis.

3. Solution for small fp3

To obtain a solution of equations (7) valid for ,30 1 we expand

a = 1 + 13oA(x, t) + " , p = oBI(x, t) + , (9)

where Al and B1 satisfy the equations

dA, d2 A,
A - a 2A1 - ,Bl (10a)
8t 8x2'

dB, d2B1
-= + B- (lOb)
at ax2

subject to

A, =0, Bl, = g(X) ' x>A at t=O.
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The solution for B1 can be written as

B1 = et f B(s) eisx ds (la)

where B(s) = (1 /2r) f_ g(u) e- i " s du, which is an analytic function of the complex variable
s for all Isl < -. Then using (la) in equation (10a) we obtain

Al = (1- et) J B(s) eis 2 ' ds . (11b)

(Ila) shows that even with a small initial input, the concentration of B increases rapidly with
the assumption behind (9) of small /3 soon becoming invalid. There is also, from (11b), a
consequent depletion of A.

It is instructive to examine the behaviour of B1 for t > 1. From (la) it follows that

Bl(X, t) ~ +", (12)

as t--> for all local initial conditions of the type considered. Now, if we write the exponent
in (12) as E = (x 2 /4t) - t = (x2 - 4t2 )/4t and consider lines of constant exponential phase E,
(say), then these are given by x2 = 4t2 + 4Et. So that with t > 0 in the (x, t) plane these lines
become parallel and propagate with the same speed v0 = ±2 at t- oo. This indicates the
formation of travelling waves with asymptotic speeds v = +2. Following the right-moving
wave we introduce the co-ordinate y = x - 2t, and then the exponent E may be written as

E y(y + 4t) (13)
4t

From (13) we can see that there are two cases to consider. First, when y is of 0(1), (13)
gives E = y + O(t-), so that (12) becomes

B(i)e - Y
B,(x, t) -- ( + , (14a)

in which both diffusion and reaction effects are contributing, and B is algebraically small, of
O(t- 11/2). However, (14a) does not hold when both y and t are large, in which case both
terms in (13) must be retained with (12) becoming

y 2t -y 2/4 t

Bl(x, t)-x B(i(Y 2t -)) t +..., (14b)

showing that here diffusion is the predominant effect. Moreover, this region is also very
weak, with B now exponentially small, of O(e-2t/Vt). Thus, ahead of the reaction-
diffusion front, there is a very weak diffusing region.

We use this information from the small 3, solution with local initial conditions to discuss
the general solution of equations (7) when t is large. Before doing so, however, we obtain
numerical solutions of equations (7), which show the formation of reaction-diffusion waves.
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4. Numerical solution

To solve equations (7) numerically, we take a form for g(x) which is symmetric about x = 0
so that the solution will also be symmetric. Hence we need consider the region x 0,
applying the boundary condition daldx = d,/ lax = 0 at x = 0. There will be another symmet-
rically disposed solution in x - 0. The numerical scheme used is a modified Crank-Nicolson
method. We first write the t-derivatives in terms of forward differences and average the other
quantities over the step from t to t + At. This results in a pair of coupled nonlinear ordinary
differential equations in x which we solve by replacing the x-derivatives by central differ-
ences, giving the two sets of algebraic equations

h2 2

h2 2h2
Uj+l - 2v + Uj_ + -UjUj -(j - 2 ) = 0, (15b)

j = 0, 1, 2,..., N, where ui = aqj + a2j, vj = P1j + 2j, (suffices 1 and 2 refer to values at t and
t + At respectively), and where h is the step length in the x-direction. The outer boundary
conditions give uN+1 = 2, vN+l =0, and from the symmetry condition we have u_ = u,
uv = v, which leads to an obvious modification to equations (15) for j = 0.

Equations (15) are solved iteratively using the Newton-Raphson method. Starting with
initial estimates for the u and v a better estimate for the ui is first calculated from (15a).
These new values are then used in (15b) to calculate a better estimate for the vj. This
procedure is repeated until a converged solution is obtained, which was deemed to have
been reached when the difference between two successive iterates was everywhere less than
10- 6. The scheme was found to converge easily, using as initial estimates the values of u, and
vU at the previous time step, taking typically just 3 for 4 iterations for convergence. At each
stage of the Newton iteration we need to solve a set of (N + 1) linear equations given in
terms of a tridiagonal matrix. To invert this matrix we used Choleski decomposition [13],
which was found to be computationally very efficient; such an efficient procedure being
required because of the large number of algebraic equations involved at each time step.

To start the calculation initial conditions (8) were used and the solution advanced in steps
at At. A check was kept on the size of the error introduced by differencing in the t-direction
by covering the step from t to t + At in first one and then two steps and calculating the
maximum difference between these two solutions. If this was greater than 5.10 -5, the step
size was halved and the process repeated. This procedure was also used as a test to double
the step At if it was found that this maximum difference was less than 5.10- 6 at the previous
step (i.e. 0.1 of the accuracy criterion). At each stage, the values of a and 3 as calculated by
the two step integration were used as initial values for the next step in the solution and were
the values outputted. In this way we could be confident of the accuracy of our solution as t
increased. A step size in the x-direction of h = 0.1 was used throughout. Some trial runs
were made with h = 0.05 and these showed that with h = 0.1 we could achieve the required
accuracy. Because of the development of the reaction-diffusion wave for large t, we had to
apply the outer boundary condition at a large distance and we took N = 1500 (i.e. the outer
boundary condition was applied at x = 150). This was found to give sufficient space for the
reaction-diffusion wave to develop fully.

Results are presented taking for g(x) the 'top-hat' profile

347



348 J.H. Merkin and D.J. Needham

IA1, xlx<Ag(x)= Ix]> A

An alternative form, g(x) = e - , was also tried, and apart from the first few steps in the
calculation the results for the two cases are virtually indistinguishable. This initial condition
gave a discontinuity at x = A which required the use of a small initial starting value for At
(At = 0.000625), but after a few steps this could be increased (as described above) and for
most of the calculation a step of At = 0.32 was found to achieve the the prescribed accuracy.
With the smooth form g(x) = eX2 /A2 no such trouble was encountered at the start.

As t increases, a reaction-diffusion wave is set up. This is illustrated in Figure 1 where we
plot profiles of a and /3 at t = 65, for the case A = /3 = 1. This picture is typical of the
reaction-diffusion waves seen at the other values of t (and with other choices of ,0 and A as
well as for g(x)). There is a small (and decreasing with t) residue of the initial input of B seen
in /3 near x = 0 (whereas a quickly decays to zero here). This is followed by a long region
where /3 = 1 and a = 0 (the species A and B are in their fully reacted states). Finally there is
a front where a and change rapidly to their outer unreacted values. It should be noted that
in this front we find that the condition a + = 1 is quickly attained (to well within the
accuracy of the numerical scheme) even though a and 3 themselves evolve much more slowly
to their final asymptotic values.

Also of interest is the speed of propagation of the wave. To fix the position of the front, at
each step we calculated xm the value of x where daldx took its maximum value. Graphs of
xm against t are shown in Figure 2 for the typical case /, = 1, A = 1 and for the cases A = 10,
/3o = 10 (for which the input of B was 100 times that for the typical case) and for /3 = 0.1,

1. 00

0. 75

0. 50

0. 25

0. 00

0 30 60 90 .. 120 150

Fig. 1. The reaction-diffusion wave: profiles of a and /3 at t = 65 for A = 1, 30, = 1.Fig. 1. The reaction-diffusion wave: profiles of a and 3 at t = 65 for A = 1, /3, = 1.
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Fig. 2. The position of the reaction-diffusion front x, plotted against t, for the cases (a) A = 1, 30 = 1, (b) A = 10,
p3 = 10 and (c) A = 0.1, 3 = 0.1.

A = 0.1 (input of B is 0.01 that of the typical case). In each of the three cases (with very

different initial amounts of B) we can see that the curves approach a straight line with the

same gradient. In fact, the position of the front is insensitive to the initial input of B (as was
found for other choices of A and 3o) and that for large times, the speed of propagation of this
front always approached the same asymptotic value, i.e. AXm/At-> 2 as t increased. The next

step is to discuss the structure of this reaction-diffusion wave.

5. Reaction-diffusion wave, large-time solution

Here we look for a solution of equations (7) valid for large t, the main feature of which, as
we have seen from the numerical solutions is a propagating reaction-diffusion wave and it is
the structure of this wave that we discuss first. As a preliminary we note that o = a + 3
satisfies the diffusion equation

acw a2 w
at d- 2' (16)

which, together with the initial condition cw = 1 + /3g(x) can be solved to obtain

= 1 + x I g(s) e-(x-()2/4t d . (17)

We now look for an asymptotic of equations (7) as t- o, the leading term of which is a
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permanent-form travelling wave moving with a speed v(t) (>0). We introduce the travelling
co-ordinate,

y = x - v(t). (18)

With o(x, t) given by (17), equations (7) reduce to a single equation for a, namely

da d2a dv da
- a+ du- - a(o -a). (19a)

at dy2 dt dy

As t---> oo we require a to approach a permanent-form steady solution in terms of the variable
y, that is a(y, t)-- a>(y) as t--> with y of 0(1). Thus a0 must satisfy the equation

d2a0 dv da 0- + - ( - o) = (19b)
dy2 dt dy

on noting that from (17), o- 1 as t--cc with y fixed for any v(t)>0. The solution of
equation (19b) must be independent of t and this is possible only if lim,, dv/dt is
independent of t, so that dv/dt--> v as t--> , where vo is a constant. Thus v - vt + · · · as
t-- oo. With this form for v(t), w is 1 + O(t 1/2 exp(-uvt/4)) for t large and y of 0(1), and,
as we shall show that the perturbations to a and /3 separately are only algebraically small in t,
we can, to this approximation put a + /3 = 1 (this was borne out by the numerical solutions).
Thus we can simplify equation (19a) to

d2a dv da da
2 + - a(1 - a) = . (19)dy2 d y t

At leading order a = ao(y), where a0 satisfies the ordinary differential equation

a; + Voao - 0(1 - a) = O , (20a)

subject to the boundary conditions

o-->1 asy--c, a 0--O asy--- . (20b)

(primes denote differentiation with respect to y). Using (20b) it follows from (20a) that, as
y---> 0,

ao l - (A e + Bo e 2Y)+ .. , (21)

where Ao and Bo are constants and where the Ai are given by

A= (v +-4) (i= , 2), (22)

with A2 Al. Hence a physically acceptable solution is possible for all v - 2. (For v0 < 2 the
solution is damped oscillatory, giving rise to physically unacceptable negative values for /).
As y- -, a0 - C e" + · , /. = (v- + 4 - vo) and we obtain a physically acceptable
solution of equation (20a) which satisfies boundary conditions (20b), and hence the
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leading-order equation for the front does not fix the speed of propagation. A result described

by Britton [15] and Rosen [9] uses a biological constraint to neglect the smaller of the

eigenvalues (22) and hence one is then able to determine a unique solution for the front
from the leading-order problem. There is no such a priori reason for doing so in our

isothermal chemical context and we now develop a consistent asymptotic theory on the

assumption that the wave travels with the minimum possible speed v, = 2. We then indicate
where this theory would break down if we were to take v0 > 2. With v0 = 2, (21) and (22)
lead to

a0 - 1- (Ay + B) e- y + , (23)

as y---> . The leading-order problem is now unique up to a shift in the origin of y, and AO

and Bo will be known from a (numerical) integration of the equations.
We take an expansion for a and v in the form

dv
a(y, t) = ao(y ) + t-'al(y)+ =+ lt- + . (24)

dt

The equation for the leading-order term is (20a) subject to (20b) with v = 2, and the
equation at O(t-') is

+ 2a -(1- 2a 0)a 1 = -v 1a;, (25)

subject to the boundary conditions

al-0 asy---, and asy---o. (26)

As y - o the solution of equation (25) behaves like

a - [AO y 3 + (Bo - AO) y21 e-y + (A 1 y + B1 ) e Y +

The expansion can be continued in this way: at O(t- 2 ) we find that

a2 (AV1 (1- V)y 5 Y + e -+ asy-m

At this stage in the expansion the behaviour of the solution for y large involves the

exponential e-y together with successively higher powers of y. So we expect this solution to

break down when y is large, which suggests the need for a further outer expansion in which

diffusion plays the major role. This was seen in the small f50, when the solution develops
from local initial conditions, solution described in Section 3 and can also be seen from

equation (7b) for P/3. For with a = 1 - /3 and 3 small (y large) equation (7b) becomes, using
(18) with v0 = 2, approximately,

= + 2 + 13. (27)
at y 2 dy

Equation (27) has a solution of the form /3 = e-Yg(y, t) where g satisfies the diffusion

equation whose solution involves terms in e- y2
/4t for y large.
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The above suggests that in this outer region we write

a = 1 + e-Yt'/ 2f(, t) , 7 = ylt 1 2 , (28)

where '1 is of 0(1), i.e. y is large, of O(tli2 ). The solution in this outer region must match
with the solution for the inner (front) region. Hence, using (23) and (26),

f -- (Ao + A A O +) _ t-112 (B + (Bo - A) 2 + + (29)
t-l / 2

for / < 1. Equation (19) becomes, using (28),

a8f +d af (v l + f + f
+ 2 - (vl + )f+ Vlt-112 ad - t f + e.s.t. =0, (30)

where e.s.t. stands for terms which are exponentially small in y.
We look for a solution of equation (30) by expanding,

f(_, t) =f0 (7) + t-/12f1 () + . . (31)

fo satisfies the equation

To + To - ( + )o = (32)2)

(primes now denote differentiation with respect to 71), subject to

fo-0 as -- oo,
(33)

fo - -Aoq(+l + v* A, 1.

The solution of equation (32) which has fo = -Ao7 + ".' for q small can be written in
terms of confluent hypergeometric functions [14] as

fo = -A e-2/4FI(F , + ; 2; 7 . (34)

Now, in general, the confluent hypergeometric function 1F (3 + vl; 3; _/ 2) is exponentially
large for -7 large, being of 0(77,2 e 2 4), and hence f0 will be algebraic at infinity unless the
series terminates, which it does when 3 + Vl = -k (k = 0, 1, 2 ... ). Taking the smallest of
these gives

3 - 2 /
4 (35)

vl1 2 fo =-Ao e (35)

We can then go on to check that this form for f, agrees with (33) for ,7 small.
Hence we have shown that dv/dt = 2 - 3/(2t) + · · · for t large, from which it follows that

= 2t- - log t + CO + -, (36)
2
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where CO is a constant of 0(1) which cannot be determined from the asymptotic expansion
and represents an 0(1) shift in origin in t. We should expect this arbitrariness in the solution
as the system is autonomous and arises because some of the detail of the small time
behaviour of the solution is lost in this asymptotic solution. Result (36) is, in our notation,
the same result derived by Bramson [10, 11] (stated previously in the introduction as (3)).
Here we have derived the same result from a simple argument, and it arises from the
requirement of matching the reaction-diffusion front region to a very weak diffusion-
controlled region ahead of it. The argument given by Bramson is in terms of Brownian
motion and is much more involved than the present one.

It now remains to see why this asymptotic solution requires the particular choice v = 2.
For, if v0 > 2 then a0 -- - A e- 'Y + · · · where Al is the smaller of the roots given by (22),
and now the higher-order terms in the expansion with y large involve the term e-AlY

multiplied by increasing integer powers of y (rather than y2 as in the previous case). Then to
match with an outer solution (in which, since this is diffusion dominated, the independent
variable must still be ry = y1t 1/ 2 ) an expansion in powers of t - 1/2 is required. The O(t- 1/2 )
term, a, still satisfies equation (25) but now,

a, ( vA, )Ag yeY+ A, e- 'Y +--- as y-m.

For the outer solution we have then a = 1 + e-lYf(,q, t) where f satisfies the equation

df (- -112 d' - t + e.s.t. = 0, (37a)

with

f_ A[l _ ( 2A, V1 ]71 (37b)

The only possibility for a solution of equation (37a) which matches with (37b) is if v0 = 2A,,
which we can see from (22) implies that v0 = 2, and the previous formulation must be
followed.

Finally we look briefly at the behaviour for x of 0(1). An examination of equations (7)
reveals that the decay of B to its uniform state will be algebraic, while A must be used up
much more quickly, dying away exponentially. This is also confirmed by the numerical
results (a typical situation is shown in Fig. 1). Here /3 is given by expression (17) when
approximated for t > 1 (with a < , a + 3 /) so that

i=/ 1 + t [2L A g()d) + ) ] (38)

For a we write

a = e-(l - 2 )ttmF(x, t) (39)

where a(0 < r < 1) and m are to be determined. Putting /3 = 1 + t-1"2 G(x, t) where G(x, t)
is given by (17) and at leading order for t large by (38), equation (7a) becomes

c2F 2 FG m dF
2 - t1/2 t F= (40)

dX t t dt

353
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Fig. 3. Graphs of a(0, t) for the three cases (a) A = 1, /3 = 1, (b) A = 10, P0 = 10 and (c) A =0.1, ,30 =0.1.
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Fig. 4. Graphs of /3(0, t) for the three cases (a) A = 1, /3 = 1, (b) A = 10, /3 = 10 and (c) =0.1, /3 =0.1.
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At leading order, the solution of equation (40) (taken to be symmetric about x = 0) is
F= K0 cosh rx (where Ko is an arbitrary constant). So for x large a - Ko e-((1- 2

)ttm eax

+ . Writing this in terms of y and using (36) gives a Ko e-((1 -- 2a)ttm-3,/2 e y + . .

Matching with the solution from the reaction-diffusion wave as y -o--> gives o- = - 1
and m = 3(V2 - 1) so that a - Ko e'Y, where /A is as given earlier with vu = 2. Hence when x

is of 0(1), a is of O(t ( -- l) e-2(v -')') for t large.

The difference in the behaviour of a and /3 for x of 0(1) can be seen in Figs 3 and 4 where
we plot graphs of a(0, t) and 3(0, t) for the three cases described earlier, namely for A = 1,

, o = 1; A = 0.1, /3 = 0.1 and A = 10, ,3 = 10. Figure 3 shows that the greater the initial input
of B, the sooner a is reacted away to zero and that, once started, this is a rapid reaction
(with very small amounts of B (,30 = 0.1, A = 0.1) there is a short initiation period prior to
the reaction getting started). In all cases all of the A is used up over a relatively short time
scale.

Figure 4 shows that the behaviour of 3 is quite different. There is an initial adjustment due
to the presence of A but when all of this has been used up, the concentration gradient in /3
can spread out only by diffusion. As this is a slow process, /3 tends to its asymptotic value
(/3(0, t)-- 1 as t o) only very slowly, in line with (38) where /3 - 1 is O(t- 1/2 ) for t large.

6. Conclusion

The propagating reaction-diffusion wave should properly be seen as the large-time solution
for an initial-value problem. When it is looked at in this way, there must ultimately be a
unique propagation speed arising from some given set of initial conditions. The asymptotic
theory then shows that the wave will travel with the minimum possible speed for all local
initial conditions of the type (5) (as is also confirmed by the numerical solutions). By just
considering the reaction-diffusion front in isolation, we are unable to predict its propagation
speed. As the wave propagates through the medium it quickly uses up all of reactant A, but
leaves behind a small and slowly-decaying residue of reactant B.

The asymptotic theory shows that ahead of the wave there is a very weak diffusive region
and it is of interest to see how this arises from the interaction of the process. At the outset B
is introduced only into some local region, with there being no B (and hence no reaction with
A) outside this region. This sets up concentration gradients on which diffusion can operate,
while where B is plentiful this reacts with A. Meanwhile the region where B is present has
spread out further by diffusion so the reaction can also start here as well. Hence the reactive
zone spreads out, leaving behind a region where eventually all the A has been used up. A
reaction-diffusion wave is then seen, pushing ahead of it a weak diffusive region, this being
needed to trigger the reaction. So the speed of propagation of the reaction-diffusion wave is
ultimately controlled by the rate at which B can spread forward by diffusion.
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